Some lacunary and random Fourier series
نویسندگان
چکیده
منابع مشابه
Lacunary Fourier Series for Compact Quantum Groups
This paper is devoted to the study of Sidon sets, Λ(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, Λ(p)-sets and lacunarities for LFourier multipliers, generali...
متن کاملOn lacunary series with random gaps
We prove Strassen’s law of the iterated logarithm for sums ∑N k=1 f(nkx), where f is a smooth periodic function on the real line and (nk)k≥1 is an increasing random sequence. Our results show that classical results of the theory of lacunary series remain valid for sequences with random gaps, even in the nonharmonic case and if the Hadamard gap condition fails.
متن کاملConvergence of Random Fourier Series
This paper will study Fourier Series with random coefficients. We begin with an introduction to Fourier series on the torus and give some of the most important results. We then give some important results from probability theory, and build on these to prove a variety of theorems that deal with the convergence or divergence of general random series. In the final section, the focus is placed on r...
متن کاملLacunary Trigonometric Series. Ii
where E c [0, 1] is any given set o f positive measure and {ak} any given sequence of real numbers. This theorem was first proved by R. Salem and A. Zygmund in case of a -0, where {flk} satisfies the so-called Hadamard's gap condition (cf. [4], (5.5), pp. 264-268). In that case they also remarked that under the hypothesis (1.2) the condition (1.3) is necessary for the validity of (1.5) (cf. [4]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1975
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700024539